cis regulatory elements:

Switches to modulate the expression level of genes

Sebastiaan Meijsing Transcriptional regulation group Berlin, Germany meijsing@molgen.mpg.de

Max Planck Institute for Molecular Genetics

Outline

- Transcription
- Cis regulatory elements
 - Transcription factors
 - Chromatin

Outline

• Transcription

- Cis regulatory elements
 - Transcription factors
 - Chromatin

Transcription

Central Dogma of Biology: DNA is transcribed into RNA which is translated into protein

Only \approx 1% of genome codes for proteins

Transcription & being multicellular

One genome:

Different cell-types

Transcription & being multicellular

One genome: \rightarrow Different transcriptomes

Transcription performed by RNA polymerases

Eukaryotic RNA polymerase-II alone is unable to bind DNA and relies on transcription factors & cis regulatory elements to initiate transcription

2 flavors:

- General transcription factors (e.g. TATAA box binding protein (TBP)
- Transcriptional regulatory factors that regulate the expression of individual genes

Outline

• Transcription

- Cis regulatory elements
 - Transcription factors
 - Chromatin

Cis-regulatory elements: Different flavors

Maston et al., Annu. Rev. Genom. Human Gent. (2006)

Today we mostly focus on cis regulatory elements that act as enhancers

Cis-regulatory elements

cis vs trans:

Cis-regulatory elements

cis vs trans:

Transcription factors and transcriptional regulation

Transcription & being multicellular

One genome: \rightarrow Different transcriptomes

How to explain tissue-specific expression

http://bioinfo2.weizmann.ac.il

Muscle cell

How to explain tissue-specific expression

Some factors are ubiquitously expressed yet target genes are tissue specific

Liu et al., Dev. Bio. 2001

TF binding sites often clustered

Panne Curr. Opinion in Struc. Biol. (2008)

How to explain tissue-specific expression-II

Modular nature of CRM → Different "switches"

Distal vs promoter proximal

Distal vs promoter proximal

Chromatin Conformation capture (3C & related techniques):

Distal vs promoter proximal

Mutations in cis regulatory elements & disease

Table 1 Transcriptional regulatory elements involved in human diseases

Regulatory Element	Disease	Mutation (bound factor)	Affected Gene	Reference
Core promoter	β-thalassemia	TATA box, CACCC box, DCE	β-globin	(4, 94, 109)
Proximal promoter	Bernard-Soulier Syndrome	133 bp upstream of TSS (GATA-1)	GpIbβ	(117)
	Charcot-Marie-Tooth disease	215 bp upstream of TSS	connexin-32	(187)
	Congenital erythropoietic porphyria	70, 90 bp upstream of TSS (GATA-1, CP2)	uroporphyrinogen III synthase	(167)
	Familial hypercholesterolemia	43 bp upstream of TSS (Sp1)	low density lipoprotein receptor	(92)
	Familial combined hyperlipidemia	39 bp upstream of TSS (Oct-1)	lipoprotein lipase	(195)
	Hemophilia	CCAAT box (C/EBP)	factor IX	(43)
	Hereditary persistence of fetal hemoglobin	~175 bp upstream of TSS (Oct-1, GATA-1)	Ay-globin	(62)
	Progressive myoclonus epilepsy	Expansion ~70 bp upstream of TSS	cystatin B	(96)
	Pyruvate kinase deficient anemia	72 bp upstream of TSS (GATA-1)	PKLR	(120)
	β-thalassemia	CACCC box (EKLF)	β-globin	(130)
	δ-thalassemia	77 bp upstream of TSS (GATA-1)	δ-globin	(125)
	Treacher Collins syndrome	346 bp upstream of TSS (YY1)	TCOF1	(123)
Enhancer	Preaxial polydactyly	1 Mb upstream of gene 📐	SHH	(107)
	Van Buchem disease	Deletion ~35 kb downstream of gene	sclerostin	(116)
	X-linked deafness	Microdeletions 900 kb upstream	POU3F4	(46)
Silencer	Asthma and allergies	509 bp upstream of TSS (YY1)	TFG-β	(78)
	Fascioscapulohumeral muscular dystrophy	Deletion of D4Z4 repeats	4q35 genes	(66)
Insulator	Beckwith-Wiedemann	CTCF binding site (CTCF)	H19/Igf	(147)
	syndrome	5 , ,	CV CV	
LCR	α-thalassemia	62 kb deletion upstream of gene cluster	α-globin genes	(75)
	β-thalassemia	~30 kb deletion removing 5'HS2–5	β -globin genes	(52)

Maston et al., Annu. Rev. Genom. Human Gent. (2006)

5-maia35emia

Polydactyly

Outline

- Transcription
- Cis regulatory elements
 - Transcription factors
 - Chromatin

Cis-regulatory elements: contain zip codes for TFs

Transcription factors

Approx. 3000 in human genome (approx 1/6th of all coding genes)

Lots of switches allowing cells to run all sorts of different "programs".

Transcription factors

Fine tuning: Getting gene dosage just right is important

Too much: Trisomy 21 (down syndrome)

(X-inactivation woman)

Copy number variation linked to various disease:

autism, schizophrenia, systemic lupus erythematosis, Crohn's disease and psoriasis

medgen.genetics.utah.edu

Too little: p53 and cancer

• Approx. 3000 in human genome (approx 1/6th of all coding genes)

Common feature: TFs recognize DNA using different types of DNA binding domains

Basic leucine zipper domain

Zinc finger domain

Helix-turn-Helix

Transcription factors

DNA recognition: Specific contacts & non-specific contacts

Specific contacts (recognize bases in major groove) Sequence specific

Non-specific contacts (e.g. DNA backbone contacts) Not sequence specific

TFs in turn facilitate RNA pol-II recruitment

TFs in turn facilitate RNA pol-II recruitment-2

TFs in turn facilitate RNA pol-II recruitment-3

TFs in turn facilitate RNA pol-II recruitment-4

Mutations in transcription factors & disease

- 1: Mutations resulting in loss of expression
- 2: Mutations resulting in loss/change of function
- 3: Translocations directing TFs to wrong genomic location

Developmental defects

Digits in wt (left) and Hoxd13 mutant (right) mice. In the mutant the N-terminal repeat has been expanded by 21 alanines

Cancer:

http://p53.free.fr/

Mutations in transcription factors & disease

- 1: Mutations resulting in loss of expression
- 2: Mutations resulting in loss of function
- 3: Translocations can mess up the normal program induced by TF (& result in disease)

Various types of cancer (MLL gene fusion proteins due to translocations result in various types of leukemia)

Outline

- Transcription
- Cis regulatory elements
 - Transcription factors

Chromatin

How do transcription factors "know" where to go? Prokaryotes:

Lacl (transcriptional repressor of lac operon)

Size genome: approx. 5 x 10⁶ bp

Motif frequency 1/4¹⁰

Binding sites / genome: ≈5

Binding site sequence accurately predict where TFs bind

How do transcription factors "know" where to go? Eukaryotes:

Typical recognition sequence for eukaryotic transcription factors is shorter

Genome is larger..... (x1000)

Smad3 (transcriptional factor)

Size genome: approx. 3 x 10⁹ bp

Motif frequency $1/4^5$ (1 every kb)

Binding sites / genome: > 3.000.000

Transcription factors/ cell: 20.000

How do transcription factors "know" where to go?

Something is missing......

Chromatin!

In Eukaryotes DNA is "packaged" into nucleosomes

Nucleosomes interfere with TF binding

Barrier 1: DNA is "packaged" into nucleosomes

Chromatin interferes with TF binding

Barrier 2: Genome is partitioned into "open" & "closed chromatin" called Heterochromatin or Euchromatin

Heintz (1928) / Belyaeva et al., PNAS (1998)

Cis-regulatory element function

Most transcription factors bind to "open" chromatin

How do transcription factors "know" where to go?

Question: Why binding to this site (and not to others)?

Pioneering factors

- Most transcription factors bind to "open" chromatin

- So called pioneering factors can bind to closed chromatin and open cis regulatory elements for "business" example: FoxA1

How do so-called pioneering factors gain excess to closed regions????

Histone modifications mark different classes of cisregulatory elements

Function(s) of these histone modifications?

Histone modifications mark different classes of cisregulatory elements

Different cis regulatory elements are marked with specific histone modifications

Function(s) of these histone modifications?

Histone modifications provide information ("Epigenetic")

Network of enzymes deposit / erase or recognize histone modifications

Histone modifications & activation

Vermeulen et al., Cell (2007)

Example Reader: TFIID binds to H3K4me3 mark found at promoter

Histone modifications & repression

Example Reader: HP1 (heterochromatin protein 1) binds H3K9me to assemble heterochromatic regions that are not transcribed

Take-home messages:

 Transcriptional regulation allows cells with essentially the same genome to have very different functions

(tissue-specific expression / combinatorial regulation)

- RNA polymerase critically depends on the help of transcription factors to <u>initiate</u>, elongate & terminate transcription

 Chromatin plays an important role in specifying where in the genome TFs & RNA polymerase can bind

(Big) unknowns out there

- Linking binding to transcriptional regulation in genomic context
- Integration of 3000 TFs & transcriptional output...?
- Inheritance of transcriptional programs (e.g. though cell cycle)
- Large part of genome encodes ncRNAs what is their function
- TF are not acting as on off switches but modulate expression levels quite precisely how is this accomplished
- Role of histone modifications in gene regulation (moving beyond correlations....)
- Dynamics
- How can TF that recognize the same sequence bind to different genomic regions & regulate different sets of genes

.....

TF specificity & recognition sequences....

Low Affinity Binding Site Clusters **Confer Hox Specificity** and Regulatory Robustness

Justin Crocker,¹ Namiko Abe,² Lucrezia Rinaldi,² Alistair P. McGregor,³ Nicolás Frankel,⁴ Shu Wang,⁵ Ahmad Alsawadi,^{6,7} Philippe Valenti,^{6,7} Serge Plaza,^{6,7} Francois Payre,^{6,7} Richard S. Mann,^{2,*} and David L. Stern^{1,*} ¹Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA ²Columbia University Medical Center, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA ³Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK ⁴Departamento de Ecología, Genética y Evolución, IEGEBA-CONICET, Facultad, de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad, Universitaria, Pabellón 2, 1428 Buenos Aires, Argentina ⁵New Jersey Neuroscience Institute, 65 James Street, Edison, NJ 08820, USA ⁶Centre de Biologie du Développement, Université de Toulouse, UPS, 31062 Cedex 9, France ⁷CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, 31062 Cedex 9, France *Correspondence: rsm10@columbia.edu (R.S.M.), sternd@janelia.hhmi.org (D.L.S.) http://dx.doi.org/10.1016/j.cell.2014.11.041

1 2 3 4 5 6 7 8 9 10 11 12 13 Hoxa Hoxb Hoxc Hoxd 頭

Model system:

Hox-cluster:

TFs that are expressed at specific positions along the anterior-posterior axis depending on their location within the cluster

TFs in turn are responsible for the regional identity of distinct anatomical domain by regulating Hox-subtypespecific target gene expression

The Hox paradox: Same motif, different function....

Same concensus recognition sequence.....

Yet different target genes & functions......

TF specificity & recognition sequences....

TF specificity & recognition sequences....

Role for low affinity binding sites to drive Hox specificity???

Low affinity (based on SELEX-seq): Ubx & AbdA selectively bind

- Low affinity binding sites selectively bound by Ubx (& AbdA)!
- High affinity binding sites: bound by all Hox proteins...